Complexity and classification of countable models

From Peano's Parlour
Revision as of 08:48, 21 January 2013 by Rkossak (Talk | contribs)

Jump to: navigation, search

Borel classification questions

Let $T$ be a completion of $PA$. It is not hard to see that the isomorphism problem for finitely generated models of $T$, $\cong^{fg}_T$, is Borel.

Coskey and Kossak [1] proved that $\cong^{fg}_T$, is essentially countable and $E_0\leq_B \cong^{fg}_T$ i.e. $\cong^{fg}_T$ is not smooth. Is $\cong^{fg}_T$ hyperfinite? In other words, is $\cong^{fg}_T$ Borel reducible to $E_0$?


  1. Samuel Coskey and Roman Kossak. The complexity of classification problems for models of arithmetic. Bull. Symbolic Logic 16(3):345--358, 2010. www   MR   bibtex
Main library