Jonsson models
A model B is J\'onsson if |B|>ℵ0 and for every A≺B, if |A|=|B|, then A=B.
Gaifman (1976) and Knight (1976) independently showed that there are J\'onsson models of PA.
J\'onsson models M of PAofcardinality\aleph_1areeither\aleph_1-likeorare″short″i.e.thereisana\in MsuchthattheSkolemclosureofaiscofinalinM.EachknownJ\'onssonmodelrealizesuncountablymanycompletetypes.Kossakhasasked:Istherean\olike J\'onssonmodelM\models\PAsuchthat|\{\tp(a): a\in M\}|=\aleph_0?IfM\models\PAis\olike and\rs then|\{\tp(a): a\in M\}|=\aleph_0,butMisnotJ\'onsson.Therefore,anotherrelatedquestionis:Istherea″weaklyJ\'onssonmodel″M\models \PA,i.e.arecursivelysaturatedmodelMsuchthatforeveryrecursivelysaturatedK\prec M,if|K|=|M|,thenK=M$? Some results related to this question are in Kossak, Roman, Four problems concerning recursively saturated models of arithmetic. Special Issue: Models of arithmetic. Notre Dame J. Formal Logic 36 (1995), no. 4, 519–530.