Difference between revisions of "Automorphisms of countable recursively saturated models"
Line 6: | Line 6: | ||
If $S$ is an inductive partial satisfaction class of $M$, and $f\in{\rm Aut}(M,S)$, then there is a countable recursively saturated elementary end extension $N$ such that $f$ extends to an automorphism of $N$. If $M$ is arithmetically saturated, then there are $f\in G$ such that for every inductive partial satisfaction class $S$ of $M$, $f\notin {\rm Aut}(M,S)$. Problem: what if $M$ is recursively, but not arithmetically, saturated? | If $S$ is an inductive partial satisfaction class of $M$, and $f\in{\rm Aut}(M,S)$, then there is a countable recursively saturated elementary end extension $N$ such that $f$ extends to an automorphism of $N$. If $M$ is arithmetically saturated, then there are $f\in G$ such that for every inductive partial satisfaction class $S$ of $M$, $f\notin {\rm Aut}(M,S)$. Problem: what if $M$ is recursively, but not arithmetically, saturated? | ||
+ | |||
+ | Reference: Kossak, Roman ''Four problems concerning recursively saturated models of arithmetic''. Special Issue: Models of arithmetic. Notre Dame J. Formal Logic 36 (1995), no. 4, 519–530. |
Revision as of 09:24, 18 January 2013
Extending automorphisms
Let $G$ be the automorphism group of a countable recursively saturated model of $PA$. For every nontrivial $f\in G$ there is a countable recursively saturated elementary end extension $N$ such that $f$ has no extension to an automorphism of $N$. It is open whether there is an $f\in G$ such that for all countable recursively saturated elementary end extensions $N$, $f$ does not extend to an automorphism of $N$?
If $S$ is an inductive partial satisfaction class of $M$, and $f\in{\rm Aut}(M,S)$, then there is a countable recursively saturated elementary end extension $N$ such that $f$ extends to an automorphism of $N$. If $M$ is arithmetically saturated, then there are $f\in G$ such that for every inductive partial satisfaction class $S$ of $M$, $f\notin {\rm Aut}(M,S)$. Problem: what if $M$ is recursively, but not arithmetically, saturated?
Reference: Kossak, Roman Four problems concerning recursively saturated models of arithmetic. Special Issue: Models of arithmetic. Notre Dame J. Formal Logic 36 (1995), no. 4, 519–530.